Complementary Error Function Calculator

Calculate the complementary error function erfc(x) with step-by-step solutions and special values

Home Categories Math Complementary Error Function Calculator

erfc(x) = 1 - erf(x) = (2/√π) ∫ₓ^∞ exp(-t²) dt

Special values: erfc(0) = 1 | erfc(∞) = 0 | erfc(-x) = 2 - erfc(x)

erfc(x) ranges from 2 (at -∞) to 0 (at +∞) Valid range: 0 < y < 2

Quick Examples

Invalid Input

For erfcinv(y), the input must be between 0 and 2 (exclusive).

erfc() erfcinv()

erf() =

erf(x)

Q-function Q(x)

½ erfc(x)

Step-by-Step Solution

1

Identify the input value

x = y =

2

Apply the complementary error function formula Apply the inverse complementary error function

erfc(x) = 1 - erf(x) = (2/√π) ∫ₓ^∞ exp(-t²) dt Find x such that erfc(x) = y

3

Result

erfc() = erfcinv() =

Common Values Reference

x erfc(x) erf(x)
-2 1.9953 -0.9953
-1 1.8427 -0.8427
0 1.0000 0.0000
0.5 0.4795 0.5205
1 0.1573 0.8427
1.5 0.0339 0.9661
2 0.0047 0.9953
3 0.0000022 0.9999978

If you like this calculator

Please help us simply by sharing it. It will help us a lot!

Share this Calculator

About Complementary Error Function Calculator

What is the Complementary Error Function?

The complementary error function erfc(x) is a special function in mathematics closely related to the error function (erf). It is widely used in probability, statistics, and physics.

Mathematical Definition

The complementary error function is defined as:

erfc(x) = 1 - erf(x) = (2/√π) ∫ₓ^∞ exp(-t²) dt

Where erf(x) is the error function.

Relationship to Error Function

The complementary error function is simply:

erfc(x) = 1 - erf(x)

This relationship is particularly useful when erf(x) is close to 1, as erfc(x) provides greater numerical precision.

Key Properties

Special Values

  • erfc(0) = 1
  • erfc(∞) = 0
  • erfc(-∞) = 2

Symmetry Property

erfc(-x) = 2 - erfc(x)

Asymptotic Behavior

For large x: erfc(x) ≈ exp(-x²)/(x√π)

Relationship to Q-Function

The Q-function used in digital communications is related to erfc:

Q(x) = ½ erfc(x/√2) erfc(x) = 2Q(x√2)

Relationship to Normal Distribution

For a standard normal distribution, the probability that a value exceeds x standard deviations:

P(X > x) = ½ erfc(x/√2)

Applications

  1. Probability and Statistics - Normal distribution calculations
  2. Signal Processing - Bit error rate calculations in communications
  3. Heat Transfer - Diffusion and conduction problems
  4. Physics - Particle diffusion, semiconductor physics
  5. Finance - Black-Scholes option pricing model

Common Values

x erfc(x)
0 1.0000
0.5 0.4795
1.0 0.1573
1.5 0.0339
2.0 0.0047
2.5 0.0004

Inverse Complementary Error Function

The inverse function erfcinv(y) gives the value x such that erfc(x) = y:

erfcinv(erfc(x)) = x

Valid for y ∈ (0, 2).