Gamma Function Calculator

Calculate the gamma function Γ(z) for real numbers with step-by-step solutions

Home Categories Math Gamma Function Calculator

Γ(z) = ∫₀^∞ t^(z-1)e^(-t) dt

For integers: Γ(n) = (n-1)! | Special: Γ(1/2) = √π ≈ 1.7724538509

Note: Γ(z) is undefined at z = 0, -1, -2, ... Uses Γ(z+1) = z! for any real number z

Quick Examples

Undefined Value (Pole)

The Gamma function has a pole at z = . It is undefined at 0 and negative integers.

Γ() !

= ()! =

Reciprocal 1/Γ(z)

Log Gamma ln(Γ(z))

Input Type

Step-by-Step Solution

1

Identify the input value

z =

2

Apply the Gamma function Γ(z) Apply generalized factorial z! = Γ(z+1)

For integer z: Γ() = ()! Using Lanczos approximation for numerical computation

3

Result

Γ() = ! =

Special Values Reference

z Γ(z) Equivalent
1 1 0! = 1
2 1 1! = 1
3 2 2! = 2
1/2 √π ≈ 1.7724538 Special value
3/2 √π/2 ≈ 0.8862269 (1/2)! = (1/2)√π
-1/2 -2√π ≈ -3.5449077 Reflection formula
0, -1, -2, ... Undefined Poles of Γ(z)

If you like this calculator

Please help us simply by sharing it. It will help us a lot!

Share this Calculator

About Gamma Function Calculator

What is the Gamma Function?

The Gamma function Γ(z) is a fundamental mathematical function that extends the factorial function to complex and real numbers. It is defined for all complex numbers except non-positive integers.

Mathematical Definition

For complex numbers with positive real part (ℜ(z) > 0), the Gamma function is defined by the integral:

Γ(z) = ∫₀^∞ t^(z-1)e^(-t) dt

Relation to Factorial

For any positive integer n:

Γ(n) = (n-1)!

Or equivalently: Γ(n+1) = n!

Examples:

  • Γ(1) = 0! = 1
  • Γ(2) = 1! = 1
  • Γ(3) = 2! = 2
  • Γ(4) = 3! = 6
  • Γ(5) = 4! = 24

Key Properties

Recursive Property

Γ(z+1) = z × Γ(z)

This allows computing Gamma values for any real or complex number.

Special Values

  • Γ(1/2) = √π ≈ 1.7724538509
  • Γ(3/2) = (1/2)√π ≈ 0.8862269255
  • Γ(-1/2) = -2√π ≈ -3.5449077018

Euler's Reflection Formula

For non-integer values of z:

Γ(z) × Γ(1-z) = π / sin(πz)

Poles of the Gamma Function

The Gamma function has simple poles (undefined points) at:

  • z = 0, -1, -2, -3, ... (all non-positive integers)

Applications

  1. Probability and Statistics - Appears in gamma, beta, chi-squared distributions
  2. Complex Analysis - Fundamental in analytic number theory
  3. Physics - Quantum mechanics, statistical mechanics
  4. Combinatorics - Generalized binomial coefficients
  5. Engineering - Signal processing, control theory

Stirling's Approximation

For large values of z:

Γ(z) ≈ √(2π/z) × (z/e)^z

Common Mistakes

  1. Confusing Γ(n) with n! - Remember: Γ(n) = (n-1)!, not n!
  2. Using non-positive integers - Γ(z) is undefined at z = 0, -1, -2, ...
  3. Forgetting the shift - The gamma function is shifted by 1 from factorial